Search This Blog

Tuesday, November 22, 2011

Working of touch senstive devices

Technologies of touch-sensitive devices to  control a computer are developed in two directions. First, the monitor can act as a measuring sensor and respond to the tip of your finger or other object and turn the touch into an electrical signal. monitor systems that respond to touch, are widely used in the management of automated counters and other movements that require gentle control. Another solution is to use plastic pads as measurement sensors. First, they were widely used with graphic panels, and today have become an integral part of many laptop computers. Movement of finger
rectangular pad stimulates identical run the cursor on the monitor. In most of these measuring senses moving fingers changes the distribution of electric voltage in switches of pad causing large differences in electrical signals. With the use of pads that respond to touch,moving cursor can reach the speed of up to 100 cm per second.

The system of touch-sensitive monitors - Electricity, released through the coating on the base layer of glass, produces a static electric field. Touching the monitors interfere with the field, and these changes the processor graphicaly displays.



1.Base layer of glass - The glass is coated with transparent electro enforceable material
2.Image Processor - The processor constantly scans an image of the electrostatic field. when changes occur in the image, processor makes calculation of coordinates.
3.The appearance of the electric field - a layer of conducting electricity with register changes in electrical voltage caused by touch.
4.The front layer of glass - the glass is electrically low voltage field that is changeable at the touch of a finger. 

Working of a HARD DISK

The area of data storage is a set of flat plates coated with magnetized lining.Data is stored as a series of coordinated magnetized area inside lining, called "domains". To read the data or write, a device called an executive device moves heads to read or write to position, vertical compared to the disk, while the plates spinning at high speed. Then, the signals are sent to the head, or the head  receives signal, which records or reads data.


1.FAT - in one part of the disc, in space to store files, information about the location of all files on the disk are stored.
2.Head "write-read" - Head reads and writes data hovering 0.002 mm above the plate surface
3.Lever of executive devices - Each head is "read-write" device placed on the light handle that rotates around the pin at one end and runs heads harmonized
4.Data cable - Trough this cable data flow between the hard disk, and devices that we call the "Master Disc". This device manages plates spins and data flow between the heads, "read-write" and the opposite of it and the executive devices.
5.Block devices executive - executive device receives a continuous flow of instructions to run the "read-write" heads.It can start running heads up to 50 times per second.
6.Magnet
7.Movable coil - coil turns inside of the permanent magnet in the center of the executive device. When an electrical impulse reaches the coil, causes her turn, and this in return causes shift of the lever of executive device.
8.Sector - on each track there are several sectors
9.Step motor - This motor is turning plates with speed of several thousand spins per minute
10.Track - Before first use, magnetized coating on each panel shares on the concentric tracks using special signal from the computer, a process called formatting.
11.A set of plates - information is stored on both of their sides.

Read-write Head - Once the head is correctly positioned, the magnet on top of her sends electrical pulses to ensure that the data will be written into proper sector.Binar data (0 and 1), encoded by electric current direction change, turnin into harmonized patterns in the "domains". The data from the disc is read the reversing the procedure, ie the passage of "domain" below the electromagnet, which induces a current in the wire.

1.Electromagnet - When data is written to disk, electrical impulses arriving there, produce magnetic fields that align "domains" on the track below.
2.Wire - this wire transfer written or read data registered between "read-write" head and the supervisory mechanism of the disk.
3."Domains" with data - Each domain is arranged in one of two possible directions. Changing direction in relation to the previous position of "domains" means 1, and when there is no change means zero.
4.Freely ordered "domains" - Where on the disc were never even written data, "domains" are freely ordered.

Working of a mouse

Mouse allows quick and easy access to many icons and operations on the computer, such as selecting from a list of possible actions (menu), work with Windows and moving files. when you move the mouse, the rubber ball turns and runs two rollers, both associated with wheel with slots. light-emitting diode (LED) sends light through the slits and transducers convert light into an electrical signal. Pressing the button will send additional information to the computer.


1. Roller - Roller turns by turning the rubber ball back and forth
2. Rubber Ball - The ball is turning when you run the mouse over the surface
3. Moving Roller
4. Slotted wheel - This wheel with the slots associated with vertical rollers.
5. Light emitting diode
6. Converter
7. Cable coupling
8. Plastic housing
9. Cable - cable connects the mouse to the computer through input on your computer
10. Chip - The chip processes data from the transducer movement and buttons before it transmitt them to computer
11. Right button - The button pressing their work to encourage the chip and the chip sends signals to the computer
12. Roller - This is moved by rotation of Roller balls


1. Wheel with slots - when the wheel rotates, the movement of the slot next to the diode produces light flashes
2. Light-emitting diode (LED) - LED sends light through the slits on the outer edge of the wheel
3. Converter - Converter code flashes of light into electrical signals.
4. Roller Lever - Lever roller transfers spins on the wheel with slits.

Tuesday, November 8, 2011

Hacking credit card code

This trick works for most of the credit cards but doesn't works for few cards specially master cards

Monday, November 7, 2011

A small habite for treatment of cancer , diabeties ,high bloodpressure , artheritis etc

It is popular in Japan today to drink water immediately after waking up every morning. Furthermore, scientific tests have proven its value. We publish below a description of use of water for our readers. For old and serious diseases as well as modern illnesses the water treatment had been found successful by a Japanese medical society as a 100% cure for the following diseases:
Headache, body ache, heart system, arthritis, fast heart beat, epilepsy, excess fatness, bronchitis asthma, TB, meningitis, kidney and urine diseases, vomiting, gastritis, diarrhea, piles, diabetes, constipation, all eye diseases, womb, cancer and menstrual disorders, ear nose and throat diseases.
METHOD OF TREATMENT
1. As you wake up in the morning before brushing teeth, drink 4 x 160ml glasses of water
2. Brush and clean the mouth but do not eat or drink anything for 45 minute
3.. After 45 minutes you may eat and drink as normal.
4. After 15 minutes of breakfast, lunch and dinner do not eat or drink anything for 2 hours
5. Those who are old or sick and are unable to drink 4 glasses of water at the beginning may commence by taking little water and gradually increase it to 4 glasses per day.
6. The above method of treatment will cure diseases of the sick and others can enjoy a healthy life.
The following list gives the number of days of treatment required to cure/control/reduce main diseases:
1. High Blood Pressure (30 days)
2. Gastric (10 days)
3. Diabetes (30 days)
4. Constipation (10 days)
5. Cancer (180 days)
6. TB (90 days)
7. Arthritis patients should follow the above treatment only for 3 days in the 1st week, and from 2nd week onwards – daily..
This treatment method has no side effects, however at the commencement of treatment you may have to urinate a few times.
It is better if we continue this and make this procedure as a routine work in our life. Drink Water and Stay healthy and Active.

This makes sense .. The Chinese and Japanese drink hot tea with their meals ..not cold water. Maybe it is time we adopt their drinking habit while eating!!! Nothing to lose, everything to gain...
For those who like to drink cold water, this article is applicable to you.
It is nice to have a cup of cold drink after a meal. However, the cold water will solidify the oily stuff that you have just consumed. It will slow down the digestion.
Once this 'sludge' reacts with the acid, it will break down and be absorbed by the intestine faster than the solid food. It will line the intestine.
Very soon, this will turn into fats and lead to cancer. It is best to drink hot soup or warm water after a meal.
A serious note about heart attacks:
· Women should know that not every heart attack symptom is going to be the left arm hurting,
· Be aware of intense pain in the jaw line.
· You may never have the first chest pain during the course of a heart attack.
· Nausea and intense sweating are also common symptoms.
· 60% of people who have a heart attack while they are asleep do not wake up.
· Pain in the jaw can wake you from a sound sleep. Let's be careful and be aware. The more we know, the better chance we could survive...
A cardiologist says if everyone who gets this mail sends it to everyone they know, you can be sure that we'll save at least one life .

Tuesday, November 1, 2011

What are mitochondria and are they making me old

One popular scientific hypothesis proposes that mitochondrial DNA plays a major role in aging. What is mitochondrial DNA and why would it play an important role in aging?

Not all of our DNA is found in our nucleus. Some is actually found in small organelles within cells called mitochondria. Scientists think these mitochondria have their own pool of DNA because they were once small free-living creatures. Sometime in our distant past, our ancestors absorbed them and now mitochondria make our energy.

It turns out that mitochondrial DNA (mtDNA) gets mutations much faster than the DNA in the nucleus. One reason for this is thought to be the presence of ROS or "reactive oxygen species" (also known as "free radical") in the mitochondria. When mitochondria make energy for us, they create ROS that can damage nearby mtDNA. In fact, this might be the reason why eating less leads to longer lives in animals -- less food, fewer ROS.

The idea is that as mtDNA becomes more and more damaged, the mitochondria cannot produce energy as well and become dysfunctional. This could lead to aging and ultimately, death. Is there any way to test this idea directly?

The most direct way to test this hypothesis would be to increase the rate of DNA mutations and see if it results in an increased rate of aging. This is exactly the experiment done by a group of researchers in Sweden. The researchers mutated a gene in mice so that the mtDNA would get more mutations faster. (The way they did this was to modify the enzyme that copies mtDNA, DNA polymerase-g, so that it made more mistakes as it copied mtDNA. The end result of this is that over time, more mutations accumulate.)

As expected, the mutant mice had more mutations in their mtDNA. So did they age faster than normal mice? Yes. At about 25 weeks of age the mutant mice started to display signs of aging that are normally seen in much older mice. The mutant mice lived for less than a year instead of for 2 to 3 years.

So, obviously mutations in mtDNA are part of the aging process. Are they everything? Probably not but they are clearly an important part of the puzzle.

Why do we age and what can we do

In the US we can expect to live to about 77 years old on average. Is this the best we can do? How much can we extend our lifespan? The oldest person on record lived to be 122 years old.

To answer these questions, we need to understand what happens to our bodies as we age. Are we programmed to live a certain number of years or do we wear out over time? These are two main theories of why we live as long as we do.

In the first, the idea is that our genes determine how long we live. We have a gene or some genes that tell our body how long it will live. If you could change that particular gene, we could live longer.

The second theory is that over time, our body and our DNA get damaged until we can no longer function properly. The idea here is that how long we last is really just a consequence of small changes in our DNA. These changes add up until the total amount of damage is too much to bear and we die.


It matters which theory is right, as it will determine how to push the limits of aging. For example, if how old we live is in our genes, then to increase our lifespan we may be able some day to change those genes. If on the other hand, our final age is based on the accumulated damage of a lifetime, then we could try to minimize that damage to live a longer life.

Which theory is right? Probably reality is a combination of these two ideas (plus some others we won't discuss). In the past decade, scientists have found evidence to support both theories.

Work in animals, in particular in worms, has shown that mutating certain genes can increase lifespan about 4-fold. For humans, that would translate to about 300 years old! These results would seem to support that there are genes that determine how long we live.

Of course, if those genes are involved in fixing the damage that comes with aging, then the data would support the second model. In the well-known human disease called Werner's syndrome, a mutated gene causes people to get older at a faster pace. The gene that is mutated is thought to be involved in DNA maintenance.

Other work shows that eating less increases how long animals will live. Although the reason for the increase in lifespan is unclear at this point, scientists have proposed that it has to do with decreasing DNA and cellular damage. Still other work suggests that cells can divide only a certain number of times. This is because of DNA at the end of chromosomes called telomeres that get shorter with each division. When they run out, the cell dies.

As you can see, trying to understand aging is a challenge. However, many scientists are fascinated by the questions of aging and the research is progressing fast. The following article is an example of the latest research on aging. The authors of the article use the mouse as a model to test the importance of mitochondrial DNA in aging.

by Sophie Candille